The World's Most Trusted Source of Information About the Fascinating World of Fish keeping

Jump to Site Navigation


You are currently browsing the Aquatic Videos category.

Oscars: An Old Favorite

By Ted Judy

The author’s wild-caught oscars imported from the Rio Orinoco. Photograph by Ted Judy.

Nine months ago, I decided to get a group of oscars to grow out, which was when I found out that there are not very many in stores, so I ended up buying some wild fish imported from the Orinoco River in Venezuela. They are probably Astronotus ocellatus, but they may also be an undescribed species. They have a lace-like pattern in their fins that is not seen in the tank strain A. ocellatus, and they do not have as much red (which has been developed in tank strains through selective breeding). I have six of them growing up in a 75-gallon tank. I expect to have to reduce the number eventually, and I am hoping to end up with a nice breeding pair. So far the fish are much more shy than the tank-raised oscars I have kept in the past, but they are no less intelligent. I can tell by the way they look at me. Check out this video of the author’s oscars as they go through their morning routine, and another of them a year later.

Posted June 14th, 2015.

Add a comment

The Immortal Naturalist: Collecting the World

th

What if two different fish species, living thousands of miles apart from each other, hold the key to Earth’s history? In this TEDx talk, evolutionary biologist and ichthyologist Prosanta Chakrabarty demonstrates the vitality of studies in nature, using 21st century tools to trace Earth’s distant history, explain why it is the way it is today — and theorize its potential futures.

One fish, two fish, red fish, bioluminescent, and blind fish? Prosanta Chakrabarty, an Associate Professor and Curator of Fishes at LSU, has traveled to over 20 countries in his quest to better understand and chronicle the plethora of fish species that call Earth home. Prosanta’s research in his lab focuses on discovering the relationships between fishes and their habitats to better understand how they evolved. His passion outside the lab focuses on showing students of all ages and backgrounds that exploring the natural world can provide insight and meaning across the blue planet.

Posted June 12th, 2015.

Add a comment

Giant Spider Crab Moulting

Photograph by Tony Wear/Shutterstock.

Photograph by Tony Wear/Shutterstock.

An uncommon aquarium resident, some spider crabs do find their way into specialized setups and are appreciated for their unique look. Although you won’t see a giant spider crab entering your tank anytime soon, since it can reach a length of 10 feet wide, watching one moult can show what to expect from their smaller brethren you might keep at home.

 

Posted May 14th, 2015.

Add a comment

Seahorses Are a Head Above the Rest

Photograph by John Wernikowski.

Photograph by John Wernikowski.

AUSTIN, Texas — Seahorses are slow, docile creatures, but their heads are perfectly shaped to sneak up and quickly snatch prey, according to marine scientists from The University of Texas at Austin.

“A seahorse is one the slowest swimming fish that we know of, but it’s able to capture prey that swim at incredible speeds for their size,” said Brad Gemmell, research associate at the University of Texas Marine Science Institute, which is part of the College of Natural Sciences.

The prey, in this case, are copepods. Copepods are extremely small crustaceans that are a critical component of the marine food web. They are a favored meal of seahorses, pipefish and sea dragons, all of which are uniquely shaped fish in the syngnathid family.

Copepods escape predators when they detect waves produced in advance of an attack, and they can jolt away at speeds of more than 500 body lengths per second. That equates to a 6-foot person swimming under water at 2,000 mph.

“Seahorses have the capability to overcome the sensory abilities of one of the most talented escape artists in the aquatic world — copepods,” said Gemmell. “People often don’t think of seahorses as amazing predators, but they really are.”

In calm conditions, seahorses are the best at capturing prey of any fish tested. They catch their intended prey 90 percent of the time. “That’s extremely high,” said Gemmell, “and we wanted to know why.”

For their study, Gemmell and his colleague Ed Buskey, professor of marine science, turned to the dwarf seahorse, Hippocampus zosterae, which is native to the Bahamas and the U.S. To observe the seahorses and the copepods in action, they used high-speed digital 3-D holography techniques developed by mechanical engineer Jian Sheng at Texas Tech University. The technique uses a microscope outfitted with a laser and a high-speed digital camera to catch the rapid movements of microscopic animals moving in and out of focus in a 3-D volume of liquid.

The holography technique revealed that the seahorse’s head is shaped to minimize the disturbance of water in front of its mouth before it strikes. Just above and in front of the seahorse’s nostrils is a kind of “no wake zone,” and the seahorse angles its head precisely in relation to its prey so that no fluid disturbance reaches it.

Other small fish with blunter heads, such as the three-spined stickleback, have no such advantage.

Gemmell said that the unique head shape of seahorses and their kin likely evolved partly in response to pressures to catch their prey. Individuals that could get very close to prey without generating an escape response would be more successful in the long term.

“It’s like an arms race between predator and prey, and the seahorse has developed a good method for getting close enough so that their striking distance is very short,” he said.

Seahorses feed by a method known as pivot feeding. They rapidly rotate their heads upward and draw the prey in with suction. The suction only works at short distances; the effective strike range for seahorses is about 1 millimeter. And a strike happens in less than 1 millisecond. Copepods can respond to predator movements in 2 to 3 milliseconds — faster than almost anything known, but not fast enough to escape the strike of the seahorse.

Once a copepod is within range of a seahorse, which is effectively cloaked by its head shape, the copepod has no chance.

Gemmell said that being able to unravel these interactions between small fish and tiny copepods is important because of the role that copepods play in larger ecosystem food webs. They are a major source of energy and anchor of the marine food web, and what affects copepods eventually affects humans, which are sitting near the top of the web, eating the larger fish that also depend on copepods.

Gemmell, Buskey and Sheng published their research this week in Nature Communications.

Source: The University of Texas at Austin

Video Credit: Brad Gemmell and Ed Buskey, University of Texas Marine Science Institute, and Jian Sheng, Texas Tech University.

Posted October 6th, 2014.

Add a comment

Guppies Jump for a Reason?

Photograph by Bluehand/Shutterstock.

COLLEGE PARK, Md – If you’ve owned a pet guppy, you know they often jump out of their tanks. Many a child has asked why the guppy jumped; many a parent has been stumped for an answer. Now a study by University of Maryland biologist Daphne De Freitas Soares reveals how guppies are able to jump so far, and suggests why they do it.

Soares, an expert in the brain circuitry that controls animal behavior, decided to study jumping guppies while researching unrelated evolutionary changes in the brainstems ofPoecilia reticulata, a wild guppy species from the island of Trinidad and the forebear to the familiar pet shop fish. During that 2011 project, a guppy jumped out of a laboratory tank and into Soares’ cup of chai.

“Fortunately it was iced chai and it had a lid on, so he stayed alive,” Soares said. “That was enough for me. I had to use a high speed camera to film what was going on.”

Soares, an assistant professor of biology, and UMD biology lecturer Hilary S. Bierman used high speed videography and digital imaging to analyze the jumping behavior of nine guppies from the wild Trinidadian species.

In a research paper published April 16 in the online peer-reviewed journal PLOS One, Soares and Bierman reported the jumping guppies started from a still position, swam backwards slowly, then changed direction and hurtled into the air. By preparing for the jump – a behavior never reported before in fish, according to the two biologists – the guppies were able to jump up to eight times their body length, at speeds of more than four feet per second.

Soares and Bierman concluded that guppies jump on purpose, and apparently not for the reasons other fish do – to escape from predators, to catch prey, or to get past obstacles on seasonal migrations.

The biologists hypothesize that jumping serves an important evolutionary purpose, allowing guppies to reach all the available habitat in Trinidad’s mountain streams. By dispersing, they move away from areas of heavy predation, minimize competition with one another, and keep the species’ genetic variability high, the researchers believe.

“Evolution is truly amazing,” said Soares, who spent her own money on fish food, but otherwise conducted the study at no cost.

The video above captures a guppy’s high flying technique.

Aerial jumping in the Trinidadian guppy (Poecilia reticulata),” Daphne Soares and Hilary S. Bierman, published April 16, 2013 in PLOS One

Posted April 26th, 2013.

Add a comment

Stick Catfish Spawning

 

Photograph by Jim Benfer

By Jim Benfer

In the April 2013 issue, Jim Benfer profiles stick catfish. For those who are interested, stick catfish can make for a challenging breeding project. These videos and brief descriptions below may help you on the path to spawning your own stick catfish.

Breeding males entice females to spawn with them on vertical aquaria glass near the water surface beginning in the overnight hours.

Usually, the females deposit two adhesive eggs side by side, starting closest to the surface, and working downward until a double chain of eggs has been deposited and fertilized.

Posted March 15th, 2013.

Add a comment

Goldfish Wheelchair

 

Photograph by Sergii Figurnyi/Shutterstock

We all know that there are people who go to extremes for their pet fish. Some dedicate entire rooms (or backyards, or basements) to them, some raise live foods, others conduct daily water changes, and at least one goldfish keeper built his disabled goldfish a flotation device so it doesn’t have to rest on the bottom.

Check out the video below to see the fish wheelchair in action!

Video by: Synirr

Posted February 7th, 2013.

Add a comment

Keeping Arowanas

South American silver arowana. Photograph by Tobias Lim Koon Li.

In the February 2012 issue, Tobias Lim Koon Li describes the beautiful and majestic South American silver arowana. That is just one of the many different types of arowanas he keeps in his 13,000-gallon pond. Check out the video below for the basic information and care requirements of the other types of arowanas that he keeps.

Video by Tobias Lim Koon Li.

Posted January 18th, 2013.

Add a comment

Giant Kribs Breeding

 

Giant kribs (Pelvicachromis sacrimontis).

By Ted Judy

Excerpted from the November 2012 “Cichlid World” column.

Almost everything about the wild origins of the giant krib (Pelvicachromis sacrimontis) is unclear. We know that the fish come from the Niger River, but we do not know exactly where. I find this a bit odd because someone has been collecting them by the thousands for decades. Whoever mans the nets must know where they are, but the fact that outside of Nigeria we are still in the dark on the issue is a testament to how difficult it is to get into Nigeria to learn anything first hand.

We know that wild giant kribs are not nearly as easy to get as they used to be, and that is all the scarier because we do not know why. The C.A.R.E.S Preservation Program has listed P. sacrimontis on its Conservation Priority Species at Risk List because we have to assume that exports are diminishing due to the fact that wild populations are also diminishing. Very little of the Nigerian rainforest remains intact, and the area of the Niger River Delta around Lagos (where we assume the populations of giant kribs are located) is heavily impacted by oil drilling and the burgeoning human population of the capital city.

Twenty years ago, the fish were available year-round, but today, the exports are very seasonal. Wild fish come out of Nigeria for only a few months each year, and the numbers of boxes are limited. Most of the receivers of these wild fish are specialty importers rather than the general wholesalers who used to get them so frequently. And the price is higher. Sadly, giant kribs are rarely found in aquarium stores anymore. That is not an entirely bad thing, however, because increasing prices drive down the demand. The hobbyists who are willing to pay the price will be the responsible keepers who really want to work with the species.

For those willing to make the effort to acquire and work with giant kribs, as the video below shows, they make excellent parents and breed readily.

Video Source: http://tedsfishroom.com/2012/08/06/who-c-a-r-e-s-pelvicachromis-sacrimontis/

Photograph by Ted Judy.

Posted October 12th, 2012.

Add a comment

Water Testing Demonstration

In the July 2012 issue, Wesley Devers discussed the importance of water testing—a fundamental and vital aspect of ensuring the health of a tank and its inhabitants. We were fortunate enough to run into a professional aquarium caretaker at our local fish shop and captured a basic look at the process. Check out the video to get an idea of the tools employed and which parameters to monitor.

 

Posted June 22nd, 2012.

Add a comment

Back to Top


Back to Top


Back to Top


Site 'Breadcrumb' Navigation:

Back to Top